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ABSTRACT Methods for alignment of protein sequences typically measure
similarity by using a substitution matrix with scores for all possible exchanges of
one amino acid with another. The most widely-used matrices are based on the
Dayhoff model of evolutionary rates. Using a different approach, we have
derived substitution matrices from about 2000 blocks of aligned sequence
segments characterizing more than 500 groups of related proteins. This led to
marked improvements in alignments and in searches using queries from each of
the groups.
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Among the most useful computer-based tools in modern biology are those that
involve sequence alignments of proteins, since these alignments often provide
important insights into gene and protein function. There are several different
types of alignments: "global" alignments of pairs of proteins related by common
ancestry throughout their lengths, "local" alignments involving related segments
of proteins, multiple alignments of members of protein families, and alignments
made during database searches to detect homology. In each case, competing
alignments are evaluated using a scoring scheme for estimating similarity.
Although several different scoring schemes have been proposed (1-6), the
mutation data matrices of Dayhoff (1, 7-9) are generally considered the standard
and are often the default in alignment and searching programs. In the Dayhoff
model, substitution rates are derived from alignments of protein sequences that
are at least 85% identical. However, the most common task involving substitution
matrices is the detection of much more distant relationships, which are only
inferred from substitution rates in the Dayhoff model. Therefore, we wondered
whether a better approach might be to use alignments in which these relationships
are explicitly represented. An incentive for investigating this possibility is that
implementation of an improved matrix in numerous important applications
requires only trivial effort.

METHODS
Deriving a frequency table from a database of blocks. Local

alignments can be represented as ungapped "blocks" with each row a different
protein segment and each column an aligned residue position. Previously, we
described an automated system, PROTOMAT, for obtaining a set of blocks given
a group of related proteins (10). This system was applied to a catalog of several
hundred protein groups, yielding a database of over 2000 blocks. Consider a
single block representing a conserved region of a protein family. For a new
member of this family, we seek a set of scores for matches and mismatches that
best favors a correct alignment with each of the other segments in the block
relative to an incorrect alignment. For each column of the block, we first count
the number of matches and mismatches of each type between the new sequence
and every other sequence in the block. For example, if the residue of the new
sequence that aligns with the first column of the first block is A and the column
has 9 As and 1 S, then there are 9 AA matches and 1 AS mismatch. This
procedure is repeated for all columns of all blocks with the summed results stored
in a table. The new sequence is added to the group. For another new sequence the
same procedure is followed, summing these numbers with those already in the
table. Notice that successive addition of each sequence to the group leads to a
table consisting of counts of all possible amino acid pairs in a column. For
example, in the column consisting of 9 As and 1S, there are 8+7+...1 = 36 possible
AA pairs, 9 AS or SA pairs and no SS pairs. Counts of all possible pairs in each
column of each block in the database are summed. So, if a block has a width of w
amino acids and a depth of s sequences, it contributes ws(s-1)/2 amino acid pairs
to the count (1 x 10 x 9÷ 2 = 45 in the example above). The result of this counting
is a frequency table listing the number of times each of the 20+19+...1 = 210
different amino acid pairs occurs among the blocks. The table is used to calculate
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a matrix representing the odds ratio between these observed frequencies and
those expected by chance.

Computing a log-odds matrix. Let the total number of amino acid i,j
pairs (1≤j≤i≤20) for each entry of the frequency table be fij. Then the observed
probability of occurrence for each i,j pair is
For the column of 9 As and 1 S in the example, where fAA = 36 and fAS = 9, qAA =

36 ÷ 45 = 0.8 and qAS = 9÷ 45 = 0.2. Next we estimate the expected probability
of occurrence for each i,j pair. It is assumed that the observed pair frequencies are
those of the population. For the example, 36 pairs have A in both positions of the
pair and 9 pairs have A at only one of the two positions, so that the expected
probability of A in a pair is [36 + (9÷ 2)] ÷ 45 = 0.9 and of S is (9÷ 2)÷ 45 = 0.1.
In general, the probability of occurrence of the ith amino acid in an i,j pair is:
The expected probability of occurrence eij for each i,j pair is then pipj for i = j and

pipj + pjpi = 2pipj for i ≠ j. In the example, the expected probability of AA is 0.9 x
0.9 = 0.81, of AS + SA is 2 x (0.9 x 0.1) = 0.18 and of SS is 0.1 x 0.1 = 0.01. An
odds ratio matrix is calculated where each entry is qij/eij. A log-odds ratio is then
calculated in bit units as sij = log2(qij/eij). If the observed frequencies are as
expected, sij = 0, if less than expected, sij < 0, if more than expected, sij > 0. Log-
odds ratios are multiplied by a scaling factor of 2 and then rounded to the nearest
integer value to produce BLOSUM substitution matrices in half bit units,
comparable to matrices generated by the PAM program (11). For each
substitution matrix, we calculated the average mutual information (12) per amino
acid pair H (also called relative entropy), and the expected score E in bit units as:

Clustering segments within blocks. To reduce multiple contributions to

amino acid pair frequencies from the most closely related members of a family,
sequences are clustered within blocks and each cluster weighted as a single
sequence in counting pairs (13). This is done by specifying a clustering
percentage in which sequence segments that are identical for at least that
percentage of amino acids are grouped together. For example, if the percentage is
set at 80%, and sequence segment A is identical to sequence segment B at≥80%
of their aligned positions, then A and B are clustered and their contributions
averaged in calculating pair frequencies. If C is identical to either A or B at≥80%
of aligned positions, it is also clustered with them and the contributions of A, B
and C averaged, even though C might not be identical to both A and B at≥80%
of aligned positions. In the above example, if 8 of the 9 sequences with As in the
9A-1S column are clustered, then the contribution of this column to the frequency

qij  = fij / Σ Σ fij

pij  = qii  + Σqij / 2

H = Σ Σ qij  x sij, E = Σ Σ pi x pj x sij.
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table is equivalent to that of a 2A-1S column, which contributes 2 AS pairs. A
consequence of clustering is that the contribution of closely related segments to
the frequency table is reduced (or eliminated when an entire block is clustered,
since this is equivalent to a single sequence in which no substitutions appear). For
example, clustering at 62% reduces the number of blocks contributing to the table
by 25%, with the remainder contributing 1.25 million pairs (including fractional
pairs), whereas without clustering, more than 15 million pairs are counted (Fig.
1). In this way, varying the clustering percentage leads to a family of matrices.
The matrix derived from a database of blocks in which sequence segments that
are identical at≥80% of aligned residues are clustered is referred to as BLOSUM
80, and so forth. The BLOSUM program implements matrix construction.
Frequency tables, matrices and programs for UNIX and DOS machines are
available over Internet by anonymous ftp (sparky.fhcrc.org).

Constructing blocks databases. For this work, we began with versions
of the Blocks database constructed by PROTOMAT (10) from 504 non-
redundant groups of proteins catalogued in PROSITE 8.0 (14) keyed to SWISS-
PROT 20 (15). PROTOMAT employs an amino acid substitution matrix at two
distinct phases of block construction (16): The MOTIF program uses a
substitution matrix when individual sequences are aligned or re-aligned against
sequence segments containing a candidate motif (16); The MOTOMAT program
uses a substitution matrix when a block is extended to either side of the motif
region and when scoring candidate blocks (10). A unitary substitution matrix
(matches = 1, mismatches = 0) was used initially, generating 2205 blocks. Next,
the BLOSUM program was applied to this database of blocks, clustering at 60%,
and the resulting matrix was used with PROTOMAT to construct a second
database consisting of 1961 blocks. The BLOSUM program was then applied to
this second database, clustering at 60%. This matrix was used to construct version
5.0 of the BLOCKS database from 559 groups in PROSITE 9.00 keyed to
SWISS-PROT 22. The BLOSUM program was applied to this final database of
2106 blocks, using a series of clustering percentages to obtain a family of log-
odds substitution matrices. This series of matrices is very similar to the series
derived from the second database. Approximately similar matrices were also
obtained from databases generated by PROTOMAT using the PAM 120 matrix,
using a matrix with a clustering percentage of 80% and using just the odd- or
even-numbered groups (data not shown).

Alignments and homology searches. Global multiple alignments were
done using version 3.0 of MULTALIN for DOS computers (17). To provide a
positive matrix, each entry was increased by 8 (with default gap penalty of 8).
Version 1.6b2 of Pearson's RDF2 program (18) was used to evaluate local
pairwise alignments.

Homology searches were done on a Sun Sparcstation using the BLASTP
version of BLAST dated 3/18/91 (11) and version 1.6b2 of FASTA (with ktup=1
and -o options) and SSEARCH, an implementation of the Smith-Waterman
algorithm (18, 19, 20). The SWISS-PROT 20 databank (15) containing 22,654
protein sequences was searched, and one search was done with each matrix for
each of the 504 groups of proteins from PROSITE 8.0. The first of the longest and
most distant sequences in the group was chosen as a searching query, inferring
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distance from PROTOMAT results and SWISS-PROT names.
In the BLOSUM matrices, the scores for B and Z were made identical to

those for D and E, respectively. We used the same gap penalties for all matrices,
-12 for the first residue in a gap and -4 for subsequent residues in a gap and -1 for
the character X.

The results of each search were analyzed by considering the sequences
used by PROTOMAT to construct blocks for the protein group as the true positive
sequences and all others as true negatives. BLAST reports the databank matches
up to a certain level of statistical significance. Therefore, we counted the number
of "misses" as the number of true positive sequences not reported. For FASTA
and SSEARCH, we followed the empirical evaluation criteria recommended by
Pearson (19); the number of "misses" is the number of true positive scores which
ranked below the 99.5th percentile of the true negative scores.

RESULTS
Comparison to the Dayhoff matrices. The BLOSUM series derived

from alignments in blocks is fundamentally different from the Dayhoff PAM
series which derives from the estimation of mutation rates. Nevertheless, the
BLOSUM series based on percent clustering of aligned segments in blocks can
be compared to the Dayhoff matrices based on percent accepted mutation (PAM)
using a measure of average information per residue pair in bit units called
"relative entropy" (9). Relative entropy is zero when the target (or observed)
distribution of pair frequencies is the same as the background (or expected)
distribution and increases as these two distributions become more
distinguishable. Relative entropy was used by Altschul to characterize the
Dayhoff matrices, which show a decrease with increasing PAM (9). For the
BLOSUM series, relative entropy increases nearly linearly with increasing
clustering percentage (Fig. 1). Based on relative entropy, the PAM 250 matrix is
comparable to BLOSUM 45 with relative entropy of about 0.4 bit, while PAM
120 is comparable to BLOSUM 80 with relative entropy of about 1 bit. BLOSUM
62 (Fig. 2, lower) is intermediate in both clustering percentage and relative
entropy (0.7 bit), and is comparable to PAM 160. Matrices with comparable
relative entropies also have similar expected scores.

Some consistent differences are seen when PAM 160 is subtracted from
BLOSUM 62 for every matrix entry (Fig. 2, upper). Compared to PAM 160,
BLOSUM 62 is less tolerant to substitutions involving hydrophilic amino acids,
while it is more tolerant to substitutions involving hydrophobic amino acids. For
rare amino acids, especially cysteine and tryptophan, BLOSUM 62 is typically
more tolerant to mismatches than is PAM 160.

Performance in multiple alignment of known structures. One test of
sequence alignment accuracy is to compare the results obtained to alignments
seen in 3-D structures. Lipmanet al. applied a simultaneous multiple alignment
program, MSA, to 3 similarly diverged serine proteases of known 3-D structures
(21). They found that for 161 closely aligned residue positions, 12 residues were
involved in misalignments. We asked how well a hierarchical multiple alignment
program, MULTALIN (17), performs on the same proteins using different
substitution matrices. Table 1 shows that MULTALIN performs much worse than
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MSA using the PAM 120, 160 or 250 matrices, misaligning residues at 30-31
positions. In comparison, MULTALIN with a simple "+6/-1" matrix (that assigns
+6 to matches and -1 to mismatches) misaligns residues at 34 positions. In the
same test using BLOSUM 45, 62 and 80, MULTALIN misaligned resides at only
6-9 positions. Comparable numbers were obtained when residues that show
differences in the positions of side chains were excluded. Therefore BLOSUM
matrices produced accurate global alignments of these sequences.

Performance in searching for homology in sequence databanks. To
determine how BLOSUM matrices perform in databank searches, we first tested
them on the G-protein coupled receptors, a particularly challenging group that has
been used previously to test searching and alignment programs (10, 18, 22, 23).
Three diverse queries, LSHR$RAT, RTA$RAT and UL33$HCMVA, were
chosen from among the 114 full-length family members catalogued in PROSITE
based on the observation that none detected either of the others in searches. The
number of misses was averaged in order to assess the overall searching
performance of different matrices for this group. Three different programs were
used, BLAST (11) and FASTA (19) and Smith-Waterman (20). BLAST rapidly
determines the best ungapped alignments in a databank. FASTA is a heuristic and
Smith-Waterman a rigorous local alignment program; both can optimize an
alignment by the introduction of gaps. Several BLOSUM and PAM matrices in
the entropy range of 0.15 - 1.2 were tested.

Results with each of the 3 programs show that all BLOSUM matrices in
the 0.3 to 0.8 range performed better than the best PAM matrix, PAM 200 (Fig.
3). In this range, each BLOSUM matrix missed about 12-25 fewer members than
the PAM matrix with similar relative entropy. Therefore, BLOSUM improved
detection of members of this family regardless of the searching program used.

To determine whether the superiority of BLOSUM matrices over PAM
matrices generalizes to other families, we carried out similar comparative tests for
504 groups of proteins catalogued in PROSITE 8.0. For BLAST, BLOSUM 62
performed slightly better overall than BLOSUM 60 or 70, moderately better than
BLOSUM 45 and much better than the best PAM matrix in this test, PAM 140
(Fig. 4). Specifically, BLOSUM 62 was better than PAM 140 for 90 groups,
whereas it was worse in only 23 other groups. As a baseline for comparison, we
used the simple +6/-1 matrix, which makes no distinction among matches or
among mismatches. Compared to +6/-1, BLOSUM 62 performance was better in
157 groups and was worse in 6 groups. Of the 504 groups tested, only 217 showed
differences in any comparison. Similar results were obtained for FASTA (data
not shown).

Very recently, two updates of the Dayhoff matrices have appeared (24,
25). Both use automated procedures to cluster similar sequences present within
an entire protein database, and therefore provide considerably more aligned pairs
than were used by Dayhoff. However, in tests of these matrices using BLAST on
each of the 504 groups, performance was not noticeably different from that of the
Dayhoff PAM 250 matrix which these matrices were intended to replace, much
worse than matrices in the BLOSUM series (Fig. 4). Compared to BLOSUM 45,
which has similar relative entropy to PAM 250, the matrix of Gonnet, Cohen and
Benner (GCB) was worse in 130 groups and better in only 3 groups and the matrix
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of Jones, Taylor and Thornton (JTT) was worse in 138 groups and better in only
5 groups.

Confirmation of a suspected relationship between transposon ORFs.
While the above tests demonstrate that BLOSUM matrices perform better overall
than PAM matrices, an example indicates the extent to which this improvement
can matter in a real situation. We investigated a suspected relationship that is
biologically attractive, but is somewhat equivocal when examined by objective
criteria. Two groups have noticed a stretch of similarity between the predicted
protein from theDrosophila mauritiana mariner transposon and that from
Caenorhabditis elegans transposon Tc1 (S. Emmons, J. Heierhorst, personal
communications) (Fig. 5). However, this alignment did not score highly enough
to allow its detection in searches using various PAM matrices. In contrast, a
BLAST search with BLOSUM 62 using the mariner predicted protein as query
detected this alignment as the best in the database (data not shown). An analysis
shows non-zero scores taken from the difference matrix of Fig. 1b assigned to
each amino acid pair. The higher absolute score for BLOSUM 62 compared to
PAM 160 (Σ=35 for BL62 > P160 versusΣ=14 for BL62 < P160) results from
many small differences. When the scores for this alignment were compared to the
scores for alignments between one of the sequences and 1000 shuffles of the
other, the score using BLOSUM 60 was 7.6 standard deviations (SD) above the
mean. In contrast, the score using PAM 160 was only 3.0 SD above the mean with
similar results for PAM 250 and PAM 120, accounting for the failure to detect
this relationship in previous database searches.

DISCUSSION
We have found that substitution matrices based on amino acid pairs in

blocks of aligned protein segments perform better in alignments and homology
searches than those based on accepted mutations in closely related groups.
Performance was improved overall in every test that we have done, including
multiple alignment (MULTALIN), detection of ungapped alignments (BLAST),
detection of gapped alignments (FASTA and Smith-Waterman) and
determination of the significance of an alignment (RDF2). The importance of
such improved performance can be profound for weakly scoring alignments that
are not detected in a search or are not trusted. For example, the alignment between
predicted proteins encoded by mariner and Tc1 transposons improved by more
than 4.5 standard deviations above the mean of comparisons to shuffled
sequences when BLOSUM 62 was used instead of PAM matrices.

There are fundamental differences between our approach and that of
Dayhoff which could account for the superior performance of BLOSUM matrices
in searches and alignments. Dayhoff estimated mutation rates from substitutions
observed in closely related proteins and extrapolated those rates to model distant
relationships. In our case, frequencies were obtained directly from relationships
represented in the blocks, regardless of evolutionary distance. Since blocks were
derived primarily from the most highly conserved regions of proteins, it is
possible that many of the differences between BLOSUM and PAM matrices arise
from different constraints on conserved regions in general. For example, Dayhoff
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found asparagine to be the most mutable residue, whereas in blocks, asparagine
is involved in substitutions at an average frequency. This could mean that an
asparagine located in a mutable region of a protein is itself highly mutable,
whereas when it is located in a conserved region, it shows only an average
tendency to be involved in substitutions.

Another difference is the larger and more representative dataset used in
this work. The Dayhoff frequency table included 36 pairs in which no accepted
point mutations occurred. In contrast, the pairs we counted included no fewer
than 2369 occurrences of any particular substitution. Scoring differences were
especially apparent for pairs involving rare amino acids such as tryptophan and
cysteine. Similar findings were made in the two recent updates of the Dayhoff
matrix (24, 25). However, in these studies, no evidence was presented that
increased data improved performance. Our tests show that the updated Dayhoff
matrices still perform poorly overall when compared to BLOSUM 62. This
suggests that matrices from aligned segments in blocks, which represent the most
highly conserved regions in proteins, are more appropriate for searches and
alignments than are matrices derived by extrapolation from mutation rates.

The BLOSUM series depends only upon the identity and composition of
groups in PROSITE and the accuracy of the automated PROTOMAT system.
While the system itself uses a substitution matrix, iterative application soon leads
to nearly the same set of scores, even starting with a unitary matrix or using a
representative subset of the groups. Therefore, we do not expect that these
substitution matrices will change significantly in the future.
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Table 1: Performance of substitution matrices in aligning 3 serine proteases
-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-

Residue positions missed1

-−−−−−−−−−−−−−−−−−−−−−−−-
Matrix Program All positions Side chains aligned
-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−-

MSA 12  6
PAM 120 MULTALIN 31 22
PAM 160 MULTALIN 30 22
PAM 250 MULTALIN 30 22
+6/-1 MULTALIN 34 26
BLOSUM 45 MULTALIN  9  5
BLOSUM 62 MULTALIN  6  4
BLOSUM 80 MULTALIN  9  6
-−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1From data of Greer (26), where residues were considered to be aligned whenever
α-carbons occupied comparable positions in space (first column). For a subset
(second column), residues were excluded where there were differences in the
positions of side chains.
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FIG 1. Relationship between percentage clustering and total amino acid pair
counts plotted on a log scale (left) and relative entropy (right).

FIG 2. BLOSUM 62 substitution matrix (lower) and the difference matrix (upper)
obtained by subtracting the PAM 160 matrix position by position. These matrices
have identical relative entropies (0.70); the expected value of BLOSUM 62 is -
0.52 and that for PAM 160 is -0.57.

FIG 3. Searching performance of programs using members of the G-protein
coupled receptor family as queries and matrices from the BLOSUM and PAM
series scaled in half-bits (11). Removal of this family from the BLOCKS database
led to a nearly identical matrix with similar performance. Matrices represented
(left to right) are BLOSUM 30, 35, 40, 45, 50, 55, 60, 62, 65, 70, 75, 80, 85, 90
and PAM 400, 310, 250, 220, 200, 160, 150, 140, 120, 110, 100. The average
number of true positive SWISS-PROT entries missed are shown for LSHR$RAT,
RTA$RAT and UL33$HCMVA versus SWISS-PROT 20. Results using BLAST
and FASTA or SSEARCH are not comparable to each other, since different
detection criteria were used for the three programs.

FIG 4. Searching performance of BLAST using different matrices from the
BLOSUM (BL) series, the PAM (P) series and two recent updates of the standard
Dayhoff matrix: GCB (24) and JTT (25). Results are based on searches using
queries for each of 504 different groups. For each pair of numbers below a box
representing a matrix, the first is the number of groups for which BLOSUM 62
missed fewer sequences than that matrix, and the second is the number of groups
for which BLOSUM 62 missed more. The vertical distance between each matrix
and BLOSUM 62 is proportional to the difference.

FIG 5. Alignment ofD. mauritiana Mariner predicted protein (aa 245-295) with
C. elegans TcA (aa 235-285) encoded by Tc1. Difference scores taken from
Figure 1b are indicated just below each alignment position. Using RDF2 with
BLOSUM 62 for 1000 shuffles and a window size of 10, this alignment scores
64, compared to a mean of 31.4, SD=4.32 for z=7.6. With PAM 160, the score is
43, compared to a mean of 30.1, SD=4.63 and z=3.0. With PAM 250, z=2.14 and
with PAM 120, z=2.98.
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                                                    Figure 1
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   C  S  T  P  A  G  N  D  E  Q  H  R  K  M  I  L  V  F  Y  W
   0 -1  1  0  2  1  1  2  1  2  0  0  2  4  1  5  1  2 -2  5 C
      2  0 -2  0 -1  0  0  0  1  0  0  0  1  0  1 -1  1  1 -1 S
C  9     2 -1 -1 -1  0  0  0  0  0  0 -1  0 -1  1  0  1  1  3 T
S -1  4     2 -2 -1 -1  0  0 -1 -1 -1  1  1  0 -1  0  0  2  1 P
T -1  1  5     2 -1 -2 -2 -1  0  0  1  1  0  0  1  0  1  1  2 A
P -3 -1 -1  7     2  0 -1 -2  0  1  1  0  0 -1  0 -1  1  2  4 G
A  0  1  0 -1  4     3 -1 -1  0  0  1 -1  0 -1  0 -1  0  0  0 N
G -3  0 -2 -2  0  6     2 -1 -1 -1  0 -1  0  0  0  0  2  1  3 D
N -3  1  0 -2 -2  0  6     1  0  0  2  2  1 -1  0  0  2  2  4 E
D -3  0 -1 -1 -2 -1  1  6     0 -2  0  1  1 -1  0  0  1  3  3 Q
E -4  0 -1 -1 -1 -2  0  2  5     2 -1  0  1  0 -1  0  1  2  2 H
Q -3  0 -1 -1 -1 -2  0  0  2  5    -1 -1  0 -1  1  0  1  3 -4 R
H -3 -1 -2 -2 -2 -2  1 -1  0  0  8     1 -2 -1  1  1  2  3  1 K
R -3 -1 -1 -2 -1 -2  0 -2  0  1  0  5    -2 -1 -1  0  1  2  4 M
K -3  0 -1 -1 -1 -2  0 -1  1  1 -1  2  5    -1  1  0  0  1  3 I
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                   Figure 3
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                    Figure 4
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Mariner
IFLHDNAPSHTARAVRDTLETLNWEVLPHAAYSPDLAPSDY
           :  :: : ::   ::          :     :::: :
Tc1
VFQQDNDPKHTSLHVRSWFQRRHVHLLDWPSQSPDLNPIEH
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                  Figure 5


